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Advanced Data Science
Topic 11b – Part 5

1. What We’ll Cover

This topic will introduce…

• What is data science.
• Key concepts – the scientific method.
• Useful terminology.

• Important tools - Statistics.
• Data collection & Experiment Design.

• Probability basics.
• Data distributions.
• Hypothesis testing.

The aim: to help you understand what it 
means to be a data scientist and to get you 
familiar with data science tools.

Part 5

2. Hypothesis Testing

• Hypothesis testing is a statistical approach used to find the 

optimal answer to the questions we pose about the world 

around us.

• It uses available knowledge captured in data, to reach 

conclusions regarding hypotheses in a rigorous way.

• The method is useful when undertaking experimental studies.

• Suppose we are tasked with determining if a medicine works. 

• We form hypotheses and split a sample population into control 

and experimental groups.

• We can use hypothesis testing to determine which of the 

hypotheses holds over the groups.

• That is, which has the most evidence in it’s favour.

• Here we are introducing the foundations of statistical inference 

central to data science and machine learning.

𝐻0= No effect

Null Hypothesis

𝐻1= Effect𝐻𝑎

Alternative Hypothesis

or

Population 
Sample

Control 
Group

Experimental
Group
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3. How this fits in?

P
ro

b
ab

ili
ty

D
e

n
si

ty

Normal / Gaussian
Distribution

Value

• So far you’ve come across concepts from lot’s of 

different areas. 

• You’ve learned about probability theory, the different 

types of data distribution (unimodal, bi-modal, multi-

modal), the law of large numbers, and how to compute 

summary statistics over samples of data, and entire 

populations. 

• We covered this material to help prepare you for the 

concepts I’ll very shortly introduce related to hypothesis 

testing. I’m sure you’re relieved that none of this time 

was wasted!

• So with that in mind, lets return to thinking about a 

distribution I’ve mentioned a few times during this 

course – the normal distribution.

4. Back to Normal
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0.1

0.2

0.3

0.4

0.5

0−𝟏𝝈 𝟏𝝈−𝟐𝝈−𝟑𝝈 2𝝈 3𝝈

𝝁

Normal / Gaussian
Distribution

• The normal curve is always a 

symmetric, unimodal, bell-shaped curve.

• The shape of the curve is determined by 

two parameters.

o The mean, 𝝁.

o The standard deviation, 𝝈.

• We can describe any normal curve via a 

pair, e.g. (𝝁 = 𝟎,𝝈 = 𝟏).

(𝝁 = 𝟏𝟎,𝝈 = 𝟑)
(𝝁 = 𝟎, 𝝈 = 𝟏)

0 1052.5 7.5
Standard Normal Distribution

5. Back to Normal
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6. Z-Score

Test 1 Scores

Test Score

1500𝟏𝟐𝟎𝟎 𝟏𝟖𝟎𝟎𝟗𝟎𝟎 2100

Test 2 Scores

Test Score

21𝟏𝟔 𝟐𝟔𝟏𝟏 1

Test 1 Test 2

Mean 1500 21

Standard 
deviation

300 5

𝑺𝒄𝒐𝒓𝒆 = 𝟐𝟒

𝑺𝒄𝒐𝒓𝒆 = 𝟏𝟖𝟎𝟎

• Suppose you’re given two normal distributions. These represent the test scores of a 

collection of students on two different tests.

• We then get scores for an individual student. 
• They score 1800 on test 1, and 24 on test 2.

• We then collect details about the mean and standard deviation of the data for each test. 

• The question is, did the student do better on test 1 or test 2?

7. 𝑍-Score

Test 1 Test 2

Mean 𝝁 1500 21

Standard 
deviation 𝝈

300 5

𝑺𝒄𝒐𝒓𝒆 𝑻𝒆𝒔𝒕 𝟐 = 𝟐𝟒

𝑺𝒄𝒐𝒓𝒆 𝑻𝒆𝒔𝒕 𝟏 = 𝟏𝟖𝟎𝟎

• One way to answer this question, is to determine how many standard deviations from the 

mean each test result is. 

• We’re assuming here the better result to be the one further from the mean in the positive 

direction.

• We can use the 𝑍-score to determine how many standard deviations an observation 𝑥
falls above or below the mean.

𝒛 =
𝒙 − 𝝁

𝝈
𝒁− 𝑺𝒄𝒐𝒓𝒆

=
𝟑𝟎𝟎

𝟑𝟎𝟎

= 𝟏 𝛔

𝒛 =
𝟏𝟖𝟎𝟎 − 𝟏𝟓𝟎𝟎

𝟑𝟎𝟎

𝑻𝒆𝒔𝒕 𝟏 − 𝒁 𝑺𝒄𝒐𝒓𝒆

𝒛 =
𝟐𝟒 − 𝟐𝟏

𝟓

=
𝟑

𝟓

= 𝟎. 𝟔 𝛔

𝑻𝒆𝒔𝒕 𝟐 − 𝒁 𝑺𝒄𝒐𝒓𝒆

𝑩𝒆𝒕𝒕𝒆𝒓
𝒓𝒆𝒔𝒖𝒍𝒕!

8. Z-Score
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9. Percentile

Test 1 Scores

1500𝟏𝟐𝟎𝟎 𝟏𝟖𝟎𝟎𝟗𝟎𝟎 2100

𝑺𝒄𝒐𝒓𝒆 = 𝟏𝟖𝟎𝟎

• Suppose we wanted to know the percentile of 

the result for the student on test 1.

• This can be represented by the area below the 

score achieved by the student.

• The total area under the curve is equal to one.  

Think back to probability – there are lots of 

potential scores a student can get, but the 

probability of all those added together is 1.

𝑷 ( 𝑺𝒄𝒐𝒓𝒆 = 𝟎) + 𝑷(𝑺𝒄𝒐𝒓𝒆 = 𝟏) + … + 𝑷(𝑺𝒄𝒐𝒓𝒆 = 𝟐𝟏𝟎𝟎) + 𝑷(𝑺𝒄𝒐𝒓𝒆 = 𝟐𝟏𝟎𝟏) … = 𝟏

𝝁

0th Percentile 50th Percentile 100th Percentile

10. Percentile

Test 1 Scores

Test Score

1500𝟏𝟐𝟎𝟎 𝟏𝟖𝟎𝟎𝟗𝟎𝟎 2100

𝑺𝒄𝒐𝒓𝒆 = 𝟏𝟖𝟎𝟎

• So what percentile does the student’s 

performance correspond to?

• We’re looking for the probability that a score is 

less than 1800 in this case.

• This would be quite tricky to compute – there’s 

a lot of numbers to add!

• There’s a trick we can use to easily compute the 

percentile for normally distributed data.

𝑷 𝑺𝒄𝒐𝒓𝒆 = 𝟎 + 𝑷 𝑺𝒄𝒐𝒓𝒆 = 𝟏 + … + 𝑷 𝑺𝒄𝒐𝒓𝒆 = 𝟏𝟕𝟗𝟗 = ?

Prob. Less than 
1800

~68% in 1𝝈

~68% in 1𝝈

11. Percentile & Normal Probability

Deviation

2.1% 2.1%

34.1% 34.1%

13.6%13.6%

0.1% 0.1%

~68% in 1𝝈

~95% in 2𝝈

𝝁
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0−𝟏𝝈 𝟏𝝈−𝟐𝝈−𝟑𝝈 2𝝈 3𝝈

~99% in 3𝝈

0

0−𝟏𝝈 𝟏𝝈−𝟐𝝈 2𝝈

Then an area of 0.682 falls 
within 1𝝈

Total Area  
under curve = 1

Total Area  
under curve = 1



13/12/2019

5

12. Normal Probability & Z-score

0−𝟏𝝈 𝟏𝝈−𝟐𝝈 2𝝈

0−𝟏𝝈 𝟏𝝈−𝟐𝝈 2𝝈

0.0 area under 
curve

1.0 all the area 
under curve

0−𝟏𝝈 𝟏𝝈−𝟐𝝈 2𝝈

𝒛 = 𝟎𝒛 = −∞
50%

0% of the data, 0% Prob. Of a value falling in this range

100% of the data, 100% Prob. of a value falling in this range

𝒁 = 𝟎 corresponds to the 50th percentile.

𝟓𝟎%

13. Percentile & Normal Probability Table

Second decimal place of 𝑍

𝒁 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0

0.1

0.2

0.3

0.4

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Test Score

1500𝟏𝟐𝟎𝟎 𝟏𝟖𝟎𝟎𝟗𝟎𝟎 2100

𝒛𝟏 = 𝟎 𝛔

𝑺𝒄𝒐𝒓𝒆 = 𝟏𝟓𝟎𝟎

0−𝟏𝝈 𝟏𝝈−𝟐𝝈 2𝝈 Deviation

𝑷𝒓𝒐𝒃.= 𝟎. 𝟓
So 50th Percentile

0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.5398 0.5438 0.5478 0.5517 0.55557 0.5596 0.5636 0.5675 0.5714 0.5753

0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

14. Percentile & Normal Probability Table

Second decimal place of 𝑍

𝒁 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0

0.1

0.2

0.3

0.4

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.5398 0.5438 0.5478 0.5517 0.55557 0.5596 0.5636 0.5675 0.5714 0.5753

0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.851 0.8554 0.8577 0.8599 0.8621

Prob. = 0.8413 = 84.13% = 84th Percentile

Test 1 Scores

1500𝟏𝟐𝟎𝟎 𝟏𝟖𝟎𝟎𝟗𝟎𝟎 2100

𝑺𝒄𝒐𝒓𝒆 = 𝟏𝟖𝟎𝟎

0th Percentile 50th Percentile 100th Percentile
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15. Percentile & Normal Probability Table

Negative 𝐙

0−𝟏𝝈 𝟏𝝈−𝟐𝝈 2𝝈Deviation 0−𝟏𝝈 𝟏𝝈−𝟐𝝈 2𝝈Deviation

Positive 𝐙

• There two normal probability tables: for when 𝑍 is negative, when 𝑧 is positive.

• You don’t need to remember normal probability tables. 

• We can create them in code.

• What matters is that you understand that:

o normal probability tables exist.

o they can be used to determine what percentile an observation is in.

o you must usually compute the 𝑍-score to make use of them.

16. Percentile & Normal Probability Table
• Sometimes we may not be looking for simple percentiles for our data. 

• We may wish to know what proportion of our data sits between two specific positions.

• We can use the concepts we’ve already learned to answer some questions. 

• We can do this by first calculating percentiles and then subtracting them from 1. 

• Once we determine the reminder, we can use this in further calculations.

?

𝟎. 𝟑𝟓 = 𝟎. 𝟑𝟓.

−
𝟎. 𝟔𝟓

𝟏. 𝟎
= 𝟎. 𝟑𝟓.

= 𝟏. 𝟎 − 𝟎. 𝟑𝟓 − 𝟎. 𝟑𝟓

= 𝟎. 𝟑𝟎

𝟑𝟎. 𝟎

= 𝟑𝟎%

17. Standard Error

• When we collect data, it usually represents a 

sample from a much larger population.

• Are our  summary statistics accurate?

• The sample mean ഥ𝒙 won’t be exactly equal to the 

population mean 𝝁. It might vary from the true 

population quite a lot, if the sample is small.

• The standard deviation associated with an 

estimate is called the Standard error of an 

estimate.

• The standard error for ഥ𝒙 is an important statistic –

provides an indication of how uncertain we are in 

ഥ𝒙.

ഥ𝒙 accurate?

𝑺𝑬ഥ𝒙 =
𝝈

𝒏

Standard Error of the Sample mean ഥ𝒙

Standard
deviation

Samples in observation
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18. Confidence Intervals

• The sample mean for a collection of observations, 

represents an estimate of 𝝁.

• If we were to make another random sampling, we’ll 

get a slightly different mean estimate.

• If we were to take many random samples from the 

population, and compute the sample mean for each 

- we would obtain a distribution for the sample 

mean.

• The average of his distribution is going to be very 

close to the true mean.

• But how confident are we in our sample mean 

estimate?

0−𝟏𝝈 𝟏𝝈−𝟐𝝈 2𝝈

ഥ𝒙 value

𝑫𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏 𝒐𝒇 ഥ𝒙

19. Confidence Intervals

• We can apply what we call “confidence intervals” to 

our estimates, to quantify our confidence level. 

• A confidence interval contains the plausible range 

of values for an estimated parameter, when taking 

uncertainty into account using the standard error.

• For example, suppose have an estimate for some 

parameter equal to 10. 

• Suppose we also know the estimated parameter has 

a standard error of 1. 

• This means it can plausibly deviate by 1. 

• We can take this into account by creating an 

interval, that takes this deviation into account. 

• The plausible range is given by the parameter plus 

1, and minus 1 (±). 

• This is a confidence interval.

𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓

𝟏𝟎

𝑺𝑬 = 𝟏
𝟗 𝟏𝟏

𝟗 𝟏𝟏

~68% in 1𝝈

20. 95% Confidence Interval

• We can construct a 95% confidence 

interval over the parameter we wish to 

estimate, in this case the sample mean, 

via the following simple formula:

𝑺𝑬ഥ𝒙 =
𝝈

𝒏

Standard Error of the Sample mean ഥ𝒙

Standard
deviationSamples in observation

𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆 ± 𝟐 × 𝑺𝑬ഥ𝒙

Plus-minus SymbolParameter being estimated

𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓
𝑳𝒐𝒘𝒆𝒓
𝑳𝒊𝒎𝒊𝒕

𝑼𝒑𝒑𝒆𝒓
𝑳𝒊𝒎𝒊𝒕− 𝟐 × 𝑺𝑬ഥ𝒙 +𝟐 × 𝑺𝑬ഥ𝒙
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21. 95% Confidence Interval - Example

𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆 ± 𝟐 × 𝑺𝑬

95.61

ഥ𝒙 = 𝟗𝟓. 𝟔𝟏

𝑺𝑬ഥ𝒙 = 𝟏.𝟓𝟖

𝑺𝑬ഥ𝒙 =
𝝈

𝒏

𝟗𝟓. 𝟔𝟏 ± 𝟐 × 𝟏.𝟓𝟖 = (𝟗𝟐.𝟒𝟓, 𝟗𝟖. 𝟕𝟕)

~95% Interval

−𝟐𝝈 2𝝈

92.45 98.77

~95% in 2𝝈

True mean somewhere in this
interval, with ~95% confidence

Mean

P
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Standard Error:

~2𝝈 Confidence Interval:

𝟗𝟓. 𝟔𝟏 + (𝟐 × 𝟏. 𝟓𝟖) = 𝟗𝟖. 𝟕𝟕

𝟗𝟓. 𝟔𝟏 − 𝟐 × 𝟏.𝟓𝟖 = 𝟗𝟐. 𝟒𝟓

22. 95% Confidence Interval

23. Confidence Intervals

𝑺𝑬 =
𝝈

𝒏

Standard Error:

𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆 ± 𝟏. 𝟗𝟔 × 𝑺𝑬

95% Confidence Interval:

𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆 ± 𝟐. 𝟓𝟖 × 𝑺𝑬

99% Confidence Interval:

𝒛∗ × 𝑺𝑬

Margin of Error

• Perhaps 95% confidence isn’t good 

enough for you – well you can compute 

a 99% confidence interval using the 

formula shown. 

• These intervals will apply to normal data 

only.

𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆 ± 𝟐 × 𝑺𝑬ഥ𝒙

This value!
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24. Testing Hypotheses

• We can start testing competing hypotheses using confidence intervals. Suppose we have 
a dataset describing the finishing times of runners in a race. 

• We want to determine if the runners finished in a faster time this year, compared to last 
year.

• We form two competing hypotheses for this data. The  null hypothesis is that there is no 
difference in average finishing times. The alternative hypothesis, is that the average 
runtime was different this year compared to last.

• The average runtime for last year’s run was 93.29 minutes. (93 minutes and 17 seconds). 
We thus reframe our hypotheses given this data.

𝐻0= No difference

Null Hypothesis

𝐻1= A difference𝐻𝑎

Alternative Hypothesis

or

𝐻0: 𝜇2019 = 93.29 𝐻1: 𝜇2019 ≠ 93.29

25. Testing 𝐻0 with Confidence Intervals 

Null Hypothesis Alternative Hypothesis

𝑺𝑬ഥ𝒙 =
𝟑𝟏. 𝟐

𝟏𝟎𝟎
= 𝟑.𝟏𝟐

Standard Error:

𝐻0 : 𝜇2019 = 93.29 𝐻1 : 𝜇2019 ≠ 93.29

𝐬 = 𝟑𝟏. 𝟐𝒏 = 𝟏𝟎𝟎

𝟖𝟗.𝟒𝟗𝟒𝟖 𝟏𝟎𝟏. 𝟕𝟐𝟓𝟐

𝟗𝟓. 𝟔𝟏 ± 𝟏. 𝟗𝟔 × 𝟑. 𝟏𝟐

95% Confidence Interval:

𝟏. 𝟗𝟔 × 𝟑. 𝟏𝟐 = 𝟔. 𝟏𝟏𝟓𝟐

𝟗𝟓 − 𝟔.𝟏𝟏𝟓𝟐 = 𝟖𝟗. 𝟒𝟗𝟒𝟖

𝟗𝟓 + 𝟔.𝟏𝟏𝟓𝟐 = 𝟏𝟎𝟏. 𝟕𝟐𝟓𝟐

Lower limit:

Upper limit:

ഥ𝒙 = 𝟗𝟓. 𝟔𝟏

𝟗𝟑.𝟐𝟗

26. Decision Errors

• In general for any hypothesis test, there are four potential test outcomes.
• When running hypotheses tests, we aim to minimise the errors we make. Confidence 

intervals are great, but alone they don’t really help us achieve that. Instead we try to 
use significance levels to determine how significant a result is, before making a decision.

𝑇𝑦𝑝𝑒 𝐼 𝐸𝑟𝑟𝑜𝑟

𝑇𝑦𝑝𝑒 𝐼𝐼 𝐸𝑟𝑟𝑜𝑟

𝑆𝑢𝑐𝑐𝑒𝑠𝑠

𝑆𝑢𝑐𝑐𝑒𝑠𝑠

𝑅𝑒𝑗𝑒𝑐𝑡 𝐻0, Accept 𝐻1Do not reject 𝐻0

𝐻0 True

𝐻1 TrueG
ro

u
n

d
 

Tr
u

th
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27. Decision Errors

• Confidence intervals are simplistic when it comes to hypothesis testing. 
• Suppose we use a 95% confidence interval for some sample mean data, where the null hypothesis is 

accepted if the sample mean falls within 1 standard deviation of the mean. 
• Sometimes the evidence against the null hypothesis may be overwhelming, like here. 
• But sometimes we may be on the cusp of rejecting the null hypothesis, but don’t quite have enough 

evidence to reject it. 
• In these situations it’s helpful to be able to quantify our confidence in the decisions we make. We can 

do this using a tool called, the P-value.

𝐻0: μ = 100

ഥ𝒙 𝐻0 strong reject

?
𝐻0: μ = 100

ഥ𝒙
𝐻0 weak accept

28. Decision Errors

29. P-values

• P-values allow us to test the strength of the evidence against 
the null hypothesis.

• The P-value is a conditional probability – it is the probability of 
observing data at least as favourable to the alternative 
hypothesis as our current dataset is, if the null hypothesis is 
true.

• It may help to think of this description as a tree diagram. We 
can see know that the p-value is simply assessing the 
probability of seeing data this favourable to the alternative 
hypothesis, given that the null hypothesis is true.

• We usually use a summary statistic such as the sample mean 
to help compute a P-value. If 𝑨 = Data favourable to 𝑯𝟏

If 𝑩 = 𝑯𝟎

𝑷(𝑩) 𝑷(𝑨)

𝑷 𝑨| 𝑩 =
𝑷(𝑨 ∧ 𝑩)

𝑷(𝑩)

Conditional Probability
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30. P-values + Significance Level

• Example: A national sleep study suggests students sleep on average 7 hours per night. 
• You’re a data scientist at a local education authority, and are tasked with determining if 

student in your area are similar.
• You collect data from a student sample (𝑛 = 110), and find that students in your area are 

sleeping on average, over seven hours.
• You want to verify that your students are indeed different from the national sample.
• You form two hypotheses:

𝐻0= No difference

Null Hypothesis

𝐻0: μ = 93.29

𝐻1= A difference𝐻𝑎

Alternative Hypothesis

or

𝐻1: μ > 7

31. P-values + Significance Level

Null Hypothesis Alternative Hypothesis

𝐻0 : μ = 7 𝐻1 : μ > 7

𝐬 = 𝟏. 𝟕𝟓 𝒉𝒐𝒖𝒓𝒔𝒏 = 𝟏𝟏𝟎

𝒛 =
𝟕. 𝟒𝟐 − 𝟕

𝟎.𝟏𝟕
= 𝟐. 𝟒𝟕

𝒛 =
𝒙 − 𝝁

𝝈

Z-score:

Sleep in hours

ഥ𝒙 = 𝟕.𝟒𝟐

𝐻0 : μ = 7

Standard error:
𝒔

𝒏
=

𝟏.𝟕𝟓

𝟏𝟏𝟎
= 𝟎.𝟏𝟕

32. P-values + Significance Level

Null Hypothesis Alternative Hypothesis

𝐻0 : μ = 7 𝐻1 : μ > 7

ഥ𝒙 = 𝟕.𝟒𝟐

𝒛 = 𝟐.𝟒𝟕 𝑷𝒓𝒐𝒃.= 𝟎.𝟗𝟗𝟑𝟐

Second decimal place of 𝑍

𝒁 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

2.4

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

99.32% 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎

𝟎. 𝟗𝟗𝟑𝟐
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33. P-values + Significance Level

Null Hypothesis Alternative Hypothesis

𝐻0 : μ = 7 𝐻1 : μ > 7

ഥ𝒙 = 𝟕.𝟒𝟐

P-value = 𝟎.𝟎𝟎𝟕 < 𝜶 = 𝟎. 𝟎𝟎𝟓

Reject Null Hypothesis99.32% 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎

𝟎. 𝟗𝟗𝟑𝟐

P-value = 𝟏 − 𝟎.𝟗𝟗𝟑𝟐 = 𝟎.𝟎𝟎𝟕

𝟎. 𝟎𝟎𝟕

𝐻0 : μ = 7

𝜶 = 𝟎. 𝟎𝟎𝟓

Significance Level

ഥ𝒙 = 𝟔.𝟖𝟑

34. Two-sided Hypothesis Test

Null Hypothesis

𝐻0 : μ = 7

Alternative Hypothesis

𝐻1 : μ ≠ 7

𝐬 = 𝟏. 𝟖 𝒉𝒐𝒖𝒓𝒔𝒏 = 𝟕𝟐

𝒛 =
𝟔. 𝟖𝟑 − 𝟕

𝟎. 𝟏𝟕
= −𝟎.𝟖𝟏 = 𝟎.𝟐𝟎𝟗𝟎

𝒛 =
𝒙 − 𝝁

𝝈

Z-score:

𝐻0 : μ = 7

20.9% 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎

𝑳𝒆𝒇𝒕 = 𝟎. 𝟐𝟎𝟗𝟎

ഥ𝒙 = 𝟔. 𝟖𝟑

35. Two-sided Hypothesis Test

Null Hypothesis

𝐻0 : μ = 7

Alternative Hypothesis

𝐻1 : μ ≠ 7

𝐬 = 𝟏. 𝟖 𝒉𝒐𝒖𝒓𝒔𝒏 = 𝟕𝟐

𝒛 = 𝟎.𝟐𝟎𝟗𝟎

𝐻0 : μ = 7

20.9% 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎

𝑳𝒆𝒇𝒕 = 𝟎. 𝟐𝟎𝟗𝟎

P-value = 𝒍𝒆𝒇𝒕 𝒕𝒂𝒊𝒍 + 𝒓𝒊𝒈𝒉𝒕 𝒕𝒂𝒊𝒍

20.9% 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎

𝑹𝒊𝒈𝒉𝒕 = 𝟎. 𝟐𝟎𝟗𝟎

𝟎. 𝟏𝟕 𝟎. 𝟏𝟕

= 𝟎. 𝟐𝟎𝟗𝟎 + 𝟎. 𝟐𝟎𝟗𝟎 = 𝟎. 𝟒𝟏𝟖𝟎

= 𝟒𝟏. 𝟖𝟎%
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ഥ𝒙 = 𝟔.𝟖𝟑

36. Two-sided Hypothesis Test

Null Hypothesis

𝐻0 : μ = 7

Alternative Hypothesis

𝐻1 : μ ≠ 7

20.9% 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎

𝑳𝒆𝒇𝒕 = 𝟎. 𝟐𝟎𝟗𝟎

20.9% 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎

𝑹𝒊𝒈𝒉𝒕 = 𝟎. 𝟐𝟎𝟗𝟎
𝟓𝟖. 𝟐% P-value = 𝟎.𝟒𝟏𝟖𝟎 > 𝜶 = 𝟎. 𝟎𝟎𝟓

Reject Alternative Hypothesis

𝜶 = 𝟎. 𝟎𝟎𝟓

Significance Level

37. Hypothesis Testing Steps

• Some of what we’ve covered here may not make sense - yet. That’s ok, because nobody 
becomes a hypothesis testing expert over night!

• What matters is that you appreciate what's happening and why.
1. We form hypotheses to answer questions about our data.
2. We collect data samples to test them.
3. We compute summary statistics over the data sample, such as the sample mean 

and sample standard deviation.
4. We compute the 𝑍-score and use this along with normal probability tables to 

determine the area under the curve.
5. We use these areas to represent probabilities as p-values, and evaluate them with 

respect to some significance level, alpha(𝛼). 
• A little practice will help make these ideas clearer.

38. Hypothesis testing
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39. Hypothesis testing

40. Activities

Link to the notebook:

41. Resources

Books:

• “OpenIntro Statistics: 4th ed”, D. Diez, M. Çetinkaya-Rundel and C. Barr.
• “Data Science from Scratch: First Principles with Python”, 2nd Edition, J. Grus.
• “Think Stats: Probability and Statistics for Programmers”, A. B. Downey.
• “Statistics in Plain English, Third Edition: Volume 1”, T. C. Urdan.

Tools Websites

• Kaggle – an online platform where you can tackle data science challenges.

• Toward data science – a website where data science practitioners share ideas, tutorials and advice.

IOC Techup 11b - Activities Supporting: Advanced Data Science
https://www.kaggle.com/
https://towardsdatascience.com/the-a-z-of-ai-and-machine-learning-comprehensive-glossary-fb6f0dd8230
https://leanpub.com/openintro-statistics
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42. Checkpoint

We’ve reached another checkpoint. Let’s recap what we’ve introduced so far.

• Normal distributions.
• The 𝑍-score.
• Probability tables.
• Standard error.
• Confidence intervals.
• Hypothesis testing.

From here you can pursue the activities provided in Google Colab, or watch the next set of slides 
which cover the ethics of data science. It’s entirely up to you.


