
10/5/2019

1

JavaScript: Part B
Learning with Examples

A Quick Glance

JavaScript Operators

Discussion on:
Conditional

Statements, Loops,
Arrays, Functions etc.

Programming
examples for each

concept.

JavaScript
Arithmetic
Operators

1

2

3

https://www.edgehill.ac.uk/studenthandbook/

10/5/2019

2

JavaScript Assignment Operators

JavaScript String
Operators

• The + operator can also be used to add
(concatenate) strings.

Adding Strings and
Numbers

• Adding two numbers, will return a sum, but
adding a number and a string will return a string

4

5

6

10/5/2019

3

JavaScript
Comparison
Operators

JavaScript
Logical

Operators

JavaScript Type Operators

7

8

9

10/5/2019

4

JavaScript Bitwise Operators

• Bit operators work on 32-bit number

• Any numeric operand in the operation is converted
into a 32-bit number.
• The result is converted back to a JavaScript number

The Concept of Data Types
• In programming, data types are an important concept

• To be able to operate on variables, it is important to know something
about the type.

• Without data types, a computer cannot safely solve this:

var x = 16 + "Volvo";

• Does it make any sense to add "Volvo" to sixteen? Will it produce an error or
will it produce a result?

• JavaScript will treat the example above as:

var x = "16" + "Volvo";

• When adding a number and a string, JavaScript will treat the number as a
string.

JavaScript Types are Dynamic

• JavaScript has dynamic types. This means that
the same variable can be used to hold
different data types

var x; x is undefined
x = 5; x is a Number
x = "John"; x is a String

10

11

12

https://www.electronics-tutorials.ws/binary/signed-binary-numbers.html

10/5/2019

5

JavaScript Strings

• A string (or a text string) is a series of characters like
"John Doe".

• Strings are written with quotes. You can use single or
double quotes:

var carName1 = "Volvo XC60"; // Using double quotes
var carName2 = 'Volvo XC60'; // Using single quotes

• You can use quotes inside a string, as long as they don't
match the quotes surrounding the string.

JavaScript Numbers

• JavaScript has only one type of number.

• Numbers can be written with, or without
decimals:

var x1 = 34.00; // Written with decimals
var x2 = 34; // Written without decimals

• Extra large or extra small numbers can be
written with scientific (exponential) notation:

var y = 123e5; // 12300000
var z = 123e-5; // 0.00123

Activity: Implement both these programs using the online JavaScript editor to check the
output and play with this program by replacing 5 by any other number.

JavaScript
Booleans

Booleans can have only two values: True and
False

var x = 5;
var y = 5;
var z = 6;
(x == y) // Returns true
(x == z) // Returns false

Booleans are often used in conditional
testing.

13

14

15

10/5/2019

6

JavaScript Booleans Example

Now go to the online JavaScript editor and verify the
output

JavaScript
Arrays

JavaScript arrays are written with square brackets

Array items are separated by commas

The following code declares (creates) an array called
cars, containing three items (car names)

var cars = ["Saab", "Volvo", "BMW"];

Array indexes are zero-based, which means the first
item is [0], second is [1], and so on

JavaScript
Arrays Example

Now go to the online JavaScript editor

16

17

18

10/5/2019

7

JavaScript Objects Example

JavaScript objects are
written with curly

braces {}.

Object properties are
written as name: value

pairs, separated by
commas.

var person =
{firstName:"John",
lastName:"Doe",

age:50,
eyeColor:"blue"};

The object (person), in
the example above, has
4 properties: firstName,

lastName, age, and
eyeColor.

Now go to the online JavaScript editor

JavaScript Functions

• A JavaScript function is a block of code
designed to perform a particular task.

• A JavaScript function is executed when
"something" invokes it (calls it).

• function myFunction(p1, p2) {
return p1 * p2; // The function returns the

product of p1 and p2
}

Now go to the online JavaScript editor to verify the output

JavaScript
Function
Syntax

A JavaScript function is defined with the function keyword, followed by a name,
followed by parentheses ().

Function names can contain letters, digits, underscores, and dollar signs (same rules
as variables).

The parentheses may include parameter names separated by commas:
(parameter1, parameter2, ...)

The code to be executed, by the function, is placed inside curly brackets: {}

function name (parameter1, parameter2, parameter3) { // code to be executed}

Function parameters are listed inside the parentheses () in the function definition.

Function arguments are the values received by the function when it is invoked.

Inside the function, the arguments (the parameters) behave as local variables.

19

20

21

10/5/2019

8

Function Return

• When JavaScript reaches a return statement, the function will stop executing.

• If the function was invoked from a statement, JavaScript will "return" to execute the
code after the invoking statement.

• Functions often compute a return value. The return value is "returned" back to the
"caller":

• Example

Calculate the product of two numbers, and return the result:

var x = myFunction(4, 3); // Function is called, return value will end up in x

function myFunction(a, b) {
return a * b; // Function returns the product of a and b

}

Why Functions?

• You can reuse code: Define the code once and use it many times.

• You can use the same code many times with different arguments, to
produce different results.

• Example

Convert Fahrenheit to Celsius:

function toCelsius(fahrenheit) {
return (5/9) * (fahrenheit-32);

}
document.getElementById("demo").innerHTML = toCelsius(77);

Functions Used as Variable
Values

• Functions can be used the same way as you use variables, in
all types of formulas, assignments, and calculations.

• Example: Instead of using a variable to store the return value
of a function:

var x = toCelsius(77);
var text = "The temperature is " + x + " Celsius";

• You can use the function directly, as a variable value:

var text = "The temperature is " + toCelsius(77) + " Celsius";

Now go to the online JavaScript Editor

22

23

24

10/5/2019

9

Local Variables

• Variables declared within a JavaScript function, become LOCAL to the function.

• Local variables can only be accessed from within the function.

• Example

// code here can NOT use carName

function myFunction() {
var carName = "Volvo";
// code here CAN use carName

}

// code here can NOT use carName

• Since local variables are only recognised inside their functions, variables with the
same name can be used in different functions.

• Local variables are created when a function starts, and deleted when the function is
completed.

Now go to the online JavaScript Editor

JavaScript if else and else if

Conditional statements are used
to perform different actions
based on different conditions.

Very often when you write
code, you want to perform
different actions for different
decisions.

You can use conditional
statements in your code to do
this.

In JavaScript we have the
following conditional
statements:

Use if to specify a block of code to be
executed, if a specified condition is true.

Use else to specify a block of code to be
executed, if the same condition is false

Use else if to specify a new condition to
test, if the first condition is false

Use switch to specify many alternative
blocks of code to be executed

The if Statement
Use the if statement
to specify a block of
JavaScript code to
be executed if a

condition is true.

• if (condition) {
// block of code to be executed if the

condition is true
}

Syntax

• if (hour < 18) {
greeting = "Good day";

}

Example: Make a
"Good day" greeting

if the hour is less
than 18:00:

Now go to the online JavaScript Editor and verify the
output

25

26

27

10/5/2019

10

The else Statement
• The else statement is used to specify a block of code to be

executed if the condition is false.

• Syntax:

if (condition) {
// block of code to be executed if the condition is true

} else {
// block of code to be executed if the condition is false

}

• Example: If the hour is less than 18, create a "Good day"
greeting, otherwise "Good evening":

if (hour < 18) {
greeting = "Good day";

} else {
greeting = "Good evening";

}

Now go to the online JavaScript Editor

The else if Statement
• Use the else if statement statement to specify a new condition if the first

condition is false.

• Syntax

if (condition1) {
// block of code to be executed if condition1 is true

} else if (condition2) {
// block of code to be executed if the condition1 is false and condition2 is

true
} else {

// block of code to be executed if the condition1 is false and condition2 is
false
}

• Example: If time is less than 10:00, create a "Good morning" greeting, if not, but
time is less than 20:00, create a "Good day" greeting, otherwise a "Good
evening":

if (time < 10) {
greeting = "Good morning";

} else if (time < 20) {
greeting = "Good day";

} else {
greeting = "Good evening";

}

Now go to the online JavaScript Editor

The JavaScript
Switch
Statement

The switch statement is used to perform different actions based on
different conditions.

Use the switch statement to select one of many code blocks to be
executed.

Syntax

• switch(expression) {
case x:
// code block
break;

case y:
// code block
break;

default:
// code block

}

This is how it works:

•The switch expression is evaluated once.

•The value of the expression is compared with the values of each case.

• If there is a match, the associated block of code is executed.

28

29

30

10/5/2019

11

Example of switch
statement

• The getDay () method returns the weekday as a number between 0 and 6.

(Sunday=0, Monday=1, Tuesday=2 ..)

• This example uses the weekday number to calculate the weekday name:

switch (new Date().getDay()) {
case 0:
day = "Sunday";
break;

case 1:
day = "Monday";
break;

case 2:
day = "Tuesday";

break;
case 3:
day = "Wednesday";
break;

case 4:
day = "Thursday";
break;

case 5:
day = "Friday";
break;

case 6:
day = "Saturday";

}

Now go to the online JavaScript Editor

JavaScript Loops

• Loops are handy, if you want to run the same code over
and over again, each time with a different value.

• Often this is the case when working with arrays:

• Instead of writing:

text += cars[0] + "
";
text += cars[1] + "
";
text += cars[2] + "
";
text += cars[3] + "
";
text += cars[4] + "
";
text += cars[5] + "
";

• You can write:

var i;
for (i = 0; i < cars.length; i++) {
text += cars[i] + "
";

}

Now go to the online JavaScript Editor

Different Kinds of Loops

• JavaScript supports different kinds of loops:

• for: loops through a block of code a number of times

• for/in: loops through the properties of an object

• for/of: loops through the values of an iterable object

• while: loops through a block of code while a specified condition is true

• do/while: also loops through a block of code while a specified condition is true

31

32

33

10/5/2019

12

The For Loop
• The for loop has the following syntax:

for (statement 1; statement 2; statement 3) {
// code block to be executed

}

• Statement 1 is executed (one time) before the execution of
the code block.

• Statement 2 defines the condition for executing the code
block.

• Statement 3 is executed (every time) after the code block
has been executed.

• Example

for (i = 0; i < 5; i++) {
text += "The number is " + i + "
";

}

• From the example above, you can read:

• Statement 1 sets a variable before the loop starts (var
i = 0).

• Statement 2 defines the condition for the loop to run
(i must be less than 5).

• Statement 3 increases a value (i++) each time the
code block in the loop has been executed.

Now go to the online JavaScript Editor

The For/In Loop

• The JavaScript for/in statement loops through the properties of an
object.

• Example

var person = {fname:"John", lname:"Doe", age:25};
var text = "";
var x;
for (x in person) {

text += person[x];
}

Now go to the online JavaScript Editor

The For/Of Loop

The JavaScript for/of statement loops
through the values of an iterable objects.

for/of lets you loop over data structures
that are iterable such as Arrays, Strings,
Maps, NodeLists, and more.

The for/of loop has the following syntax:

for (variable of iterable) {
// code block to be executed

}

34

35

36

10/5/2019

13

The While Loop

• The while loop loops through a block of code as long as a specified
condition is true.

• Syntax

while (condition) {
// code block to be executed

}

• In the following example, the code in the loop will run, over and
over again, as long as variable (i) is less than 10:

while (i < 10) {
text += "The number is " + i;
i++;

}

Now go to the online JavaScript Editor

The Do/While Loop
• The do/while loop is a variant of the while loop. This loop will execute the code block

once, before checking if the condition is true, then it will repeat the loop as long as the
condition is true.

• Syntax

do {
// code block to be executed

}
while (condition);

• The example below uses a do/while loop. The loop will always be executed at least once,
even if the condition is false, because the code block is executed before the condition is
tested:

do {
text += "The number is " + i;
i++;

}
while (i < 10);

Now go to the online JavaScript Editor

JavaScript
Break and
Continue

The break statement "jumps
out" of a loop.

The continue statement "jumps
over" one iteration in the loop.

37

38

39

10/5/2019

14

The Break Statement

• The break statement can be used to jump out of a
loop.

• The break statement breaks the loop and
continues executing the code after the loop (if
any):

• Example:

for (i = 0; i < 10; i++) {
if (i === 3) { break; }
text += "The number is " + i + "
";

}

Now go to the online JavaScript Editor

The Continue Statement

• The continue statement breaks one iteration
(in the loop), if a specified condition occurs,
and continues with the next iteration in the
loop.

• This example skips the value of 3:

for (i = 0; i < 10; i++) {
if (i === 3) { continue; }
text += "The number is " + i + "
";

}

Now go to the online JavaScript Editor

Overview

JavaScript Operators

Discussion on:
Conditional

Statements, Loops,
Arrays, Functions etc.

Programming
examples for each

concept.

40

41

42

