
10/4/2019

1

Advanced Python
Module 7A.2. Part 3

1. What We’ll Cover

In Part 3 we will reinforce our understanding
of Python by going over,

• Variables
• Keywords
• Objects
• Sets
• Other data structures
• Functions.

The aim: to get you back programming in
Python outside of code academy, acquiring
new experience along the way.

2. Interactive Resource

• Google Collaboratory is online environment that contains all the tools necessary to write and execute
Python programs.

• To use the Collaboratory, all you’ll need is a google account, e.g. a Gmail Account and the Chrome
Web Browser.

• When you login to the Collaboratory, it creates a computer just for you to work with.
• The environment will allow you to create Python code, and execute it.
• The environment is special, as it allows code to be executed in an interactive fashion. This means you

don’t need to write a whole source code file, before you can run some code.
• Instead you can execute individual commands one at a time. This is great for learning.
• Before proceeding, please create a google account if you don’t already have one.

1

2

3

10/4/2019

2

3. Google Colab

4. Google Colab Notebook

Link to the notebook:
https://colab.research.google.com/drive/1JNwsQ6PM7IifWK2fXMEa0PP

jw2RjxIMj

5. Setting Standards

• So far we’ve used code academy to write our code.
• We’ve not thought about the best way to write code – how to make it

clear, concise, and easy to maintain.
• There is a set of standards, some might say guidelines, for writing

“good” Python code.
• The standard was created when a Python Enhancement Proposal

(PEP) was approved.
• PEP 8 defined some coding standards which I encourage you to adopt.
• The code we write will adhere to this standard – but if you’re ever in

doubt about coding styles or conventions – check the standard.
• Good programmers try to keep to the standards!

Link to the PEP8 Coding Guidelines:
https://www.python.org/dev/peps/pep-0008/#comments

4

5

6

https://colab.research.google.com/drive/1JNwsQ6PM7IifWK2fXMEa0PPjw2RjxIMj
https://www.python.org/dev/peps/pep-0008/#comments

10/4/2019

3

6. Comments

Now we’re hopping straight back into Python programming. Let’s review writing comments
in Python.

Why do we comment our code?
• To explain how it works.
• To make it easier to read.
• To help make the code easier to maintain, for those who didn’t write it.
• It is important to write informative, succinct comments.
• There are two types of comment:

o In-line comments
o Block comments

7. Comments Compared

Head over to the notebook, to explore writing comments.

a = 1 + 10 # An in-line comment explaining this line of code

A block comment explaining the code below.

#

If the comment needs more than one paragraph, split

the comment up using an empty comment line as above.

a = 1 + 10

In-line comment

Block comment

(hash symbol) – is used to start a comment.

8. Basic Variables

We’ve already created all sorts of variables.

• Numerical variables such as height = 1.86.
• String variables such as name = “Rob”.
• Boolean variables such as like_programming = True.

Variables are stored in memory. The Python interpreter takes care of
where they’re stored.

Python also figures out what type variables are for us – but we mustn’t
mix the types. For example,

a = 1

print(a + “some text”) # produces an error!

7

8

9

10/4/2019

4

9. Basic Variables

Head over to the notebook, to explore variable types for yourself.

Type Examples Python Code Example

Integer … -2, -1, 0, 1, 2 … x = 1

Float … -2.1, -1.4, 0.01, 1.2, 2.8 x = 0.5675

String hello x = “hello”

Boolean TRUE or FALSE x = True

10. Basic Variables

• We must be careful when using variables – we must use them
together appropriately.

• We can convert some variables to other types. For example, we can
convert the text value “1” to a numerical value of 1. To do this we
“cast” the variable to a different data type.

• We can perform this casting successfully, if we understand a little
more about numerical variables - they may be,
o Integers – whole numbers on the number line such as … -2, -1, 0,

1, 2 … and so on.
o Floating-point numbers – numbers with fractional components

such as … -2.1, -1.3, 0.02, 1.01, 2.4 … and so on.

0 1 2 3 4 5 6-1-2-3-4-5-6

11. Casting

• We can convert any integer to a floating-point numerical data type via
the command float(). For example:

a = 1

print(float(a))

• We can convert text containing only an integer, to an integer type via
the command int(). For example:

a = “1”

print(int(a))

• We can convert an integer or float to string type too, via the
command str(). For example:

a = 1

print(str(a))

10

11

12

10/4/2019

5

12. Casting

• We can convert a float to an integer via the command int(). For example:

a = 1.33

print(int(a))

1

• What’s happened here? Well, integers don’t have fractional parts. So where does the
.33 go? In Python and all other computer programming languages, this fractional
component gets truncated (or chopped off!).

• When converting a float to an integer, the float is either rounded up or down to the
nearest whole number, depending on the programming language.

• In Python floats are rounded down. Try running this:

a = 2.9

print(int(a))

Head over to the notebook, to explore creating and casting variables for yourself.

13. Strings

• String variables (type str) contain textual information.

• Strings are present in lots of programming languages, including Python.
• I realize you’ve already created strings in code academy, for example:

name = “Rob”

print(name)

• You also know about escape characters you can insert into strings to
improve the formatting. For example,
o The newline character: “\n”.
o The carriage return character: “\r”.
o The tab character: “\t”.

14. Strings
• String variables can be used in different ways. You know you can print them:

print(“A string”)

• You know that you can access individual characters in the string using the
following notation:

text = “Hello”

print(text[0]) # Prints out ‘H’

• You also know you can access whole parts of strings using “slicing”. We can
do this with the following notation:

print(text[0:2]) # Prints out ‘He’

• Head over the the notebook to explore strings a little more.

13

14

15

10/4/2019

6

15. Immutability

• In Python, strings are immutable. This means that once
they’re created, they can’t be changed.

• This may seem strange, as you probably feel like you’ve
changed strings in your code.

• In reality all strings you create are put in memory and do
not change.

• It’s important we know this, otherwise we might
introduce errors into our code.

• Actually, many Python objects are immutable – but there
are exceptions.

• Head over to the notebook to explore immutability.

Type Immutable?

Boolean

Integer

float

String

Frozenset

list

set

dict

16. Indentation

• All computer programming
languages have some way of
indicating where a line, or block of
code, finishes.

• In Python, these blocks are defined
using indentation.

• When writing your Python code, you
may have encountered problems
due to how your code was indented
– maybe even errors.

• Most students new to Python
struggle with indentation.

Java

while (condition == true)

{

System.out.println(“Still true”);

}

System.out.println (“Not in the loop.”)

Python

while condition == True:

print (“Still true”)

print(“Not in the loop.”)
Indented relative to

the loop above.

17. Indentation

• The PEP8 standard tells us to use 4 spaces per
indentation level.

• As we progress through the slides, we’ll see how
indentation is used – try your best to adopt the
correct approach.

• You can head over to the notebook to explore
indentation.

while condition == True:

print (“Still true”)

Exactly 4 spaces

16

17

18

10/4/2019

7

Memory

18. Lists

Python lists are mutable collections. Suppose we have,

list = [‘r’, ‘o’, ‘b’, ‘!’]

As they are mutable, we can change them without creating new
objects. For example if we do,

list[3] = ‘.’

then we change the list directly. If we do this with a string, e.g.

name = “Rob!”

name[3] = ‘.’

We get a new string in memory.

“R” “o” “b” “!”“.”

“Rob!”

“Rob.”

19. Lists

• There’s so much more you can do with lists. You can,
o Add items to lists.
o Delete items from lists.
o Add lists together.
o Use in-built functions to find the minimum or maximum elements

in a list.
o Count how many times an item occurs in a list.

• At this point head over to the notebook and try some lists exercises.

20. Dictionaries

Memory

“Rob!”

• Python dictionaries are also mutable collections.
• They contain pairs of keys and values. Each key

uniquely identifies a set of values in the
dictionary.

• We can create dictionaries with simple
commands:

dict = {“1”: “Rob!”}

• We can change the dictionary directly:

dict[“1”] = “Rob.”

• Or access dictionary elements:

print(dict[‘1’])

Head over to the notebook to learn more about
using dictionaries.

Keys Values

“1”

“Hi” “I’m” “Rob.”“a”

19

20

21

10/4/2019

8

21. Operators & Precedence

There are many operators in Python. You might know some of them.

• Logical operators
o not, and, or

• Equality operators
o is, is not, ==, !=

• Comparison operators
• <, <=, >, >=

• Arithmetic operators:
o +, - , *, /

Less than (<)
Great than (>)
Less than or equal to (<=)
Greater than or equal to (>=)

Exactly equal to (==)
Not equal to (!=)

22. Operators & Precedence

To become advanced Python programmers, we need to understand how
these operators relate to one another, and how they are used to evaluate
expressions. An expression can be as simple as:

x = 4 * 1 # Which equals 4.

What about more complex expressions – what’s the value of x here?

x = 4 + 9 -1 * 3 / 6

It’s 12.5 Do you understand why this is the case? It’s because division and
multiplication have higher precedence. Here’s what happened in steps:

1. 3 / 6 = 0.5 (division first)
2. -1 * 0.5 = -0.5 (multiplication second)
3. 4 + 9 – 0.5 = 12.5 (addition and subtraction last).

23. Operators & Precedence

• It’s important to use operators correctly,
otherwise you’ll get unexpected outputs. We can
use brackets to force expressions to be evaluated
in the order we want, e.g.

x = ((4 + 9 - 1) * 3) / 6 # Equals 6

• Here’s a table showing the precedence of some,
but not all operators.

• Head over to the notebook to examine
precedence further.

Operator / Group Symbol / Example

Parentheses () x = (1 + 5) *

6

Multiplication,
division, remainder

* , / , %

Addition,
subtraction

+, -

Comparisons,
membership,
identity

in, not in,

is, is not,

<,

<=, >, >=,

<>, !=, ==

Boolean NOT not

Boolean AND and

Boolean OR or

Highest
Precedence

Lowest
Precedence

22

23

24

10/4/2019

9

24. If-else

• Often we need to control the flow of our Python programs,
based on one or more conditions.

• In Python, If-else statements allow us to do this.
• These statements evaluate one or more variables in terms of,

o Equality (are the variables equal).
o Whether or not their values fall in some specific range.

• You can have multiple tests in an If-else statement.
• Sometimes we may want to check for more than one

condition. Python provides us with the elif keyword for
just this scenario.

• We can therefore build up complex control-flow code using
these statements.

• More examples are provided in the notebook, so head over
there now.

if var == True:

print(“True”)

if var != “Test”:

print(“Not equal”)

if 0 < var < 10:

print(“Between 0-10”)

elif var < 0:

print(“Less than 0”)

else:

print(“Greater than 10”)

25. While Loops

• It is often desirable to repeat a piece of code, until some
condition is met. In Python this can be achieved with a while

loop.
• For example, while the user is yet to pick a file, wait for them to

choose.
• We can visualise what while loops are actually doing to better

understand them:
1. The code reaches a point represented by the blue circle.
2. A condition is then checked by the while loop.

3. If the condition does not hold, execution skips past the
while loop and carries on.

4. If the condition does hold, whatever code is in the code
block is repeated.

5. The code returns to the start point represent by the blue
circle, and the process repeats again.

Does
condition

hold?

Start

No

Code
Block

Yes

26. While Loops

• While loops can be declared as follows:

condition = True

While condition:

print(“This condition remains true…”)

• If the variable condition is never set to False, this

statement will loop forever!
• This isn’t good, so always ensure your conditions will be

updated properly when using while loops.
• Head over to the notebook to try some more examples.

Does
condition

hold?

Start

Yes

Code
Block

No

25

26

27

10/4/2019

10

27. For Loops

• For loops are similar to while loops, however they
give you access to variables capable of
maintaining counts, useful for many tasks.

• To make such a for loop, we use a Python standard
library function, range(), to keep count.

• For example, this code will print out the numbers
1 to 9.

• If we want to include the number 10, we must
modify our inputs to the range function like so.

Get use to using the range function, it is very useful:

https://docs.python.org/3/library/functions.html#fu
nc-range

for num in range(1,10):

print(num)

Prints 1 to 9

for num in range(1,11):

print(num)

Prints 1 to 10

28. For Loops

• Python also supports for loops, capable of iterating
over collections, such as lists.

• Here’s a simple example that iterates over a collection
of strings:

x = [“a”, “b”, “c”]

for text in x:

print(text)

Which will print out:

a

b

c

• Head over to the notebook for more examples and
activities.

29. Functions

• Functions are reusable self-contained units of code that are incredibly useful.
• Functions have a standard structure in Python.

def my_function(input_1, input_2):

answer = input_1 + input_2

print (answer)

return answer

• The function above takes two variables, adds them together, then returns the
value.

• Functions can accept multiple input parameters.
• Functions can return a value, but they don’t have to.

Function Signature

Function Body (defines
scope of function

28

29

30

https://docs.python.org/3/library/functions.html#func-range

10/4/2019

11

30. Scope

• In the last slide “scope” was mentioned.
• Scope refers to the area of the code that variables or functions are

available to be used.
• If a variable is defined in a function, for example, it’s scope is confined

to the function.
• This means it can only be seen within the function, and not

elsewhere.
• It also means that variables defined outside of functions, can’t be

seen or edited within the functions.
• These issues trip up novice programmers, so we’ll explore scope for

ourselves now – head over to the notebook and find the section on
scope.

• Scope is a difficult topic to explain using slides, but the notebook will
help us to learn via examples.

20. Summary

Here we’ve reviewed,

• Python coding standards.
• Basic variables.
• Casting.
• Strings.
• Immutability.
• Indentation.
• Lists and Dictionaries.
• Operator precedence.
• If else statements, while loops and for loops.
• Functions.
• Variable scope.

That’s an awful lot of material! In part 4, we’ll encounter some more advanced topics.

31

32

