
10/4/2019

1

Advanced Python
Module 7A.2. Part 1

1. What We’ll Cover

Part 1 will explain…

• Programming from first principles.
• How programming relates to

hardware.
• What programming languages allow us

to do.
• The different types of languages.
• Where Python fits in.

The aim: to help you understand the
programming you’ve already done in a wider
context.

2. Progress

• So far, you’ve undertaken code academy
tutorials, and learned the basics of writing
code.

• I think it’s true to say that you’ve made
great progress!

• Tools like code academy are fantastic –
they’ve allowed you to learn the process of
programming.

• However, such tools abstract away some of
the important detail - now we try to fill in
some of the gaps.

1

2

3

10/4/2019

2

3. Programming In a Nutshell

• Programming involves the writing of instructions that
orchestrate the actions of a computer and it’s
hardware components.

• The instructions are written with the aim of
accomplishing a specific goal or completing a specific
task.

• You know this, but what does it mean?
• How is it achieved?
• We don’t need to delve too deep into computer

science to gain a solid understanding.

4. Current Experience

• For many of you, programming has
consisted of the following steps:
1. Open a web browser (Chrome,

Firefox, etc).
2. Load the code academy

website.
3. Edit the code in the browser

window.
4. Run the code in the browser

window.
• Some of you may have written code

in other tools, then run it via a
website.

5. What’s Really Happening?

• Although these details are abstracted away when using
code academy, what you’re actually doing, is controlling a
CPU.
o The code academy website is running on a computer.
o When you run your code in the browser window, it is

executed on a computer hosted somewhere.
o That computer has it’s own CPU, memory, hard disks

etc. When you create a variable such as name =
“Rob”, that variable is stored in the RAM (memory)

of that computer.
o Your instructions are passed to that computer’s CPU,

and executed.
• This is what’s really been happening when you’ve been

running code during your tutorials.

Standard, everyday CPU.

4

5

6

10/4/2019

3

6. Controlling a CPU

A simple diagram of a modern CPU is shown to the right.
• It accepts input in the form of machine code, and

produces outputs, also in machine code.
• The parts in between are responsible for various tasks

– math operations (adding, subtracting etc), moving
data, finding data, logical tests, and accessing the
memory.

To control the CPU, the code you write is turned into
“Machine Code”. The CPU then reads the machine code,
and ultimately does as it’s told!

But how does this link to the programming you’ve been
doing?

7. Microarchitecture Review

Credit: https://www.youtube.com/watch?v=FkeRMQzD-0Y

8. Types of Languages

“Low Level” Languages
• Hard for humans to read.
• Easy for machines to read.
• Can be processed efficiently by CPUs.
• Often written in binary or simple numerical

format.
• Can be used to control specific parts of the CPU.
• The total lines of code required to do simple

tasks can become very large!

• It links, as the code you write has to be converted into machine code.
• There are two different types of coding language:

“High Level” Languages
• Easy for humans to read.
• Hard for machines to read.
• Cannot be processed efficiently by CPUs.
• Often written using a combination of human

language and numbers.
• The total lines of code required to do simple

tasks is small!
• Human language is after all more expressive.

7

8

9

https://www.youtube.com/watch?v=FkeRMQzD-0Y

10/4/2019

4

9. Translating to Machine Code

• Machine code clearly doesn’t need translating for the CPU to
understand it.

• All other programming languages must be translated. There are two
main approaches for doing this.

Written code

Compiler

Executable machine
code file

Written code

Interpreter

Executable machine
code file

Compiled Interpreted

10. Back to Python

• Python is an interpreted programming language.
• When you run Python code in code academy, a python interpreter reads

each line, converts it to machine code, and this is run by the CPU.
• You’ve been learning Python 3. Thus, you’ve been using an interpreter

capable of translating Python 3 code to machine code.
• Programming languages improve over time. If you wrote code Python 2

code, a Python 3 interpreter would not understand it. Thus ,you’d get
errors.

• What’s important to understand here:
o Python is interpreted, you therefore need an interpreter to run

Python code.
o You must use an interpreter that understand the code your writing.
o Any computer with a suitable Python interpreter will be able to run

your code.

11. Advantages

• There are many advantages to Python being interpreted.
• These have simplified your learning a great deal.
• These advantages include:

o The ability to create variables without explaining what they
contain (e.g. are variables numbers or strings).

o The ability to create variables without worry where they are
stored in memory.

o The ability to run individual python commands without having to
build entire programs.

o The ability to run Python code on any machine with an
interpreter (platform independence).

10

11

12

10/4/2019

5

12. Disadvantages

There are some disadvantages:

• We can’t control where variables are put in memory, making it
difficult to write super-efficient programs.

• Interpreting Python code is slow – this means Python problems do
not run as fast as programs compiled in other languages.

• Because we don’t explicitly tell Python what types our variables are,
we can introduce unexpected errors if we’re not careful.

13. Review – Compiled vs. Interpreted

Credit: https://www.youtube.com/watch?v=I1f45REi3k4

14. New Understanding

• So far you’ve primarily written Python in code academy.
• However, now you understand Python in a new way.
• You know you can write Python code outside of code academy and

use an interpreter to run it.
• When doing this, we’re controlling the CPU, getting it to execute

tasks.
• We’ll build upon this understanding moving forward.

13

14

15

10/4/2019

6

15. Summary

Here we’ve introduced,

• A new way to think about programming – as controlling a CPU.
• How programming relates to computer hardware.
• Machine code, and how it needs to be translated.
• The different type of computer programming languages.
• How this relates to Python and the work you’ve already done.

Next we explore the environments we’ll be coding in during this module,
and how to setup Python for yourself.

16. Links

Useful links:

• https://en.wikipedia.org/wiki/Computer_programming

• https://en.wikipedia.org/wiki/Machine_code

• https://en.wikipedia.org/wiki/Compiled_language

• https://en.wikipedia.org/wiki/Interpreted_language

• https://en.wikipedia.org/wiki/High-level_programming_language

• Great tutorial video: https://www.youtube.com/watch?v=rfscVS0vtbw

16

17

https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Compiled_language
https://en.wikipedia.org/wiki/Interpreted_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://www.youtube.com/watch?v=rfscVS0vtbw

