
1

5.3 Natural Language Processing with Python

Topics Covered:

• Working with files

• Natural Language Toolkit (NLTK)
o Sentence Splitting
o Tokenisation
o POS Tagging
o Bigram Extraction

Activity 1: Working with Files

Python handles files natively so you don’t need to import any special libraries whilst working
with files. As in any other languages, you firstly need to open a file, then do some processing
and finally close the file. In order to open a file, use the open function as show in the figure
below:

The open function has three main arguments:

File: path to the file you want to process
Mode: access mode of that file

r: reading the file
w: writing into file

Once you have finished processing the file, you the close function as follows:

1.1: Reading from a text file

a) Firstly, download the text file foo.txt save it into your hard disk.
b) In order to read the content of the foo.txt file we will use the readlines() function

which reads a file line by line and stores the content of the file into a list. Each
element of the list corresponds to a line.

2

c) If you want to store the content of a file into a variable rather than a list,
iterate through lines and append each line to the variable as shown below

1.2: Writing into a text file

• In order to write content into a file you can use the write() function as shown
below:

1.3: Reading from a CSV file
CSV is a popular format for making available tabular data. Each line in a CSV file determines
a record while each record consists of different fields (i.e., columns) that are separated by
character delimiter (e.g., tab, space, comma.).

• Download the csv james_bond_movies.csv it into your hard disk.
o The james_bond_movies.csv contains 8 record (8 lines) and each line

consists of two fields: the name of the movie and the director of the
movie.

• In order to read a csv file you can use the readlines() function as explained
above. If you are interested in a specific field of the CSV file you can split each
line using the character delimiter.

3

o The script below shows how you can read only the movie names from the
james_bond_movies.csv file

Exercise 2.1: Write a Python script that:
▪ reads the james_bond_movies.csv file
▪ and stores the director names into:

1) a list
 and

2) into a single variable
Exercise 2.2: Write a Python script that:

▪ reads the director names from the james_bond_movies.csv file and saves
the director names into a new file called ‘director_names.txt’

Activity 2: Using the Natural Language Toolkit (NLTK)

NLTK is a popular library in Python for developing Natural Language Processing applications.
NLTK is readily available within your python installation but we need to install some
additional modules.

2.1: Setting up the NLTK

• Create a new Python3 file and enter the commands as shown below

• Execute the following script

4

• In the new window that appears, go to the ‘All Packages’ tab

• And download the following three packages:
 1. ‘averaged_perceptron_tagger’ 2 .‘punkt’ 3. stopwords

2.2: Tokenisation in NLTK
NLTK allows you to perform tokenisation using one command only

• First import the word_tokenize function using the command:

• The word_tokenize() function takes as an input a document (single string variable
not list) and returns a list of words contained in that document

5

2.3: Part-of-speech (POS) tagging in NLTK
Similar to tokenisation, POS tagging is performed with one command only

• First import the pos_tag function using the command: ‘from nltk import pos_tag’

• The pos_tag() function takes as an input a list of words, previously extracted
using the word_tokenise() function and it returns a list of tuples, where the first
item of the tuple is the word and the second item the POS tag

Activity 3 - Extracting Bigrams in NLTK

3.1 Using only one NLTK command you can extract bigrams

• First import the pos_tag function using the command: ‘from nltk import pos_tag’

• The bigrams() function takes as an input a list of tuples, previously extracted
using the pos_tag() function, and returns a Python iterable object which can be
easily converted into a list of pairs/tuples using the list() function.

• Each pair in the list consist of two items:
o the first item is a <word, pos tag> tuple which corresponds to the first word of

the bigram
o the second item is another <word, pos tag> tuple which corresponds to the

second word of the bigram

 Printing bigram elements

6

Printing parts of bigram elements

3.2 Computing the Frequency of Bigrams
 To compute the frequency of bigrams we will need to write our own custom

function. Our function should take as an input a list of bigrams with POS tags,
previously extracted using the function list(bigrams()) and it should return a
dictionary with the following keys/values:

1. Key of dictionary: Tuple: <first word of bigram, second word of bigram>
2. Value of dictionary: Frequency of the bigram

• Finally, we simply need to call the compute_frequency_of_bigrams() function

7

 3.3 Sorting bigrams by frequency

• The sorted() function of the Python’s operator library can be used to sort a
dictionary by values.

Activity 4: Advanced (not compulsory)

Exercise:
Given the sentence:
“The City of New York is often called New York City or simply New York.”

• filter the bigram list by keeping only those bigrams whose POS tag matches one
of the following:

o “JJ NN”
o “NN NN”
o “NNP NNP”

8

o “NNP NN”
Hint: In the compute_frequency_of_bigrams() function add an if statement to filter bigrams

4.1 Computing Mutual information

• To compute the mutual information, you first need to import Python’s math
library

• Then you need to compute the following:
1. N=number of unique words
2. Probability of first word = frequency of first word/N
3. Probability of second word = frequency of second word/N
4. Probability of bigram = frequency of bigram/N

𝑝𝑚𝑖(𝑥; 𝑦) = 𝑙𝑜𝑔2
𝑃(𝑥, 𝑦)

𝑃(𝑥)𝑃(𝑦)

