5.3 Natural Language Processing with Python

Topics Covered:
e Working with files
e Natural Language Toolkit (NLTK)
o Sentence Splitting
o Tokenisation
o POS Tagging
o Bigram Extraction

Activity 1: Working with Files

Python handles files natively so you don’t need to import any special libraries whilst working
with files. As in any other languages, you firstly need to open a file, then do some processing
and finally close the file. In order to open a file, use the open function as show in the figure
below:

file = open(file='path to file', mode='r or w')

The open function has three main arguments:
File: path to the file you want to process
Mode: access mode of that file
r: reading the file
w: writing into file
Once you have finished processing the file, you the close function as follows:

file = open(file='path to file', mode='r or w'
file.close()

1.1: Reading from a text file
a) Firstly, download the text file foo.txt save it into your hard disk.
b) In order to read the content of the foo.txt file we will use the readlines() function
which reads a file line by line and stores the content of the file into a list. Each
element of the list corresponds to a line.

file = open(file='/Users/georgios/Downloads/foo.txt', mode='r"')
lines = file.readlines()

print(lines)

file.close()

['Edge Hill University is a campus-based public university in Ormskirk, L
ancashire, England, which opened in 1885 as Edge Hill College, the first
non-denominational teacher training college for women in England, before
admitting its first male students in 1959. \n', 'In 2005, Edge Hill was g
ranted Taught Degree Awarding Powers by the Privy Council and became Edge
Hill University on 18 May 2006.')

c) If you want to store the content of a file into a variable rather than a list,
iterate through lines and append each line to the variable as shown below

file = open(file='/Users/georgios/Downloads/foo.txt', mode='r')
lines = file.readlines()

or line in nes i
print(document)
file.close()

Edge Hill University is a campus-based public university in Ormskirk, Lan
cashire, England, which opened in 1885 as Edge Hill College, the first no
n-denominational teacher training college for women in England, before ad
mitting its first male students in 1959.

In 2005, Edge Hill was granted Taught Degree Awarding Powers by the Privy
Council and became Edge Hill University on 18 May 2006.

1.2: Writing into a text file
e In order to write content into a file you can use the write() function as shown

below:

file = open('/Users/georgios/Downloads/my foo.txt', 'w')
file.write('This is my first sentence\n')
file.write('This is my second sentence')

file.close()

1.3: Reading from a CSV file
CSV is a popular format for making available tabular data. Each line in a CSV file determines

a record while each record consists of different fields (i.e., columns) that are separated by
character delimiter (e.g., tab, space, comma.).

e Download the csvjames_bond_movies.csv it into your hard disk.

o The james_bond_movies.csv contains 8 record (8 lines) and each line
consists of two fields: the name of the movie and the director of the
movie.

e Inorder toread a csv file you can use the readlines() function as explained
above. If you are interested in a specific field of the CSV file you can split each
line using the character delimiter.

o The script below shows how you can read only the movie names from the
james_bond_movies.csv file

file = open('/Users/georgios/Downloads/james bond movies.csv', 'r')
lines = file.readlines()
movie_names = '
for line in lines:
movie name = line.split('\t')[0)
movie names += movie name +'\n'
print(movie_ names)

file.close()

Never Say Never Again

Dr. No

From Russia With Love
Goldfinger

Thunderball

You Only Live Twice

On Her Majesty's Secret Service
Diamonds Are Forever

Exercise 2.1: Write a Python script that:
= reads the james_bond_movies.csv file
= and stores the director names into:
1) alist
and
2) into a single variable
Exercise 2.2: Write a Python script that:
= reads the director names from the james_bond_movies.csv file and saves
the director names into a new file called ‘director_names.txt’

Activity 2: Using the Natural Language Toolkit (NLTK)

NLTK is a popular library in Python for developing Natural Language Processing applications.
NLTK is readily available within your python installation but we need to install some
additional modules.

2.1: Setting up the NLTK

e Create a new Python3 file and enter the commands as shown below
e Execute the following script

In []: dimport nltk
nltk.download()

e Inthe new window that appears, go to the ‘All Packages’ tab

I Dowricase -]

Tile Vew Sor Meln i

whmpon Al 38e corpos wa on ot oy
N AT GCRagns Avarlanie Co) A JETA G pages Drandh A oot o
Boce EveryTheng wisd i o MUTC Bock e ot ol iy
popclar Pagader pe kapm n i
By Tt Doty Gata Dackeges /A non el
Darwrkoad g
e And download the following three packages:
1. ‘averaged_perceptron_tagger’ 2 .‘punkt’ 3. stopwords
File Vew Son sHelp
% Anne All Packages
idantifer Name Sae
abe Asliadian BroadCastng Commingan 2005 14 MB

DU ramiman rammary 4o¢ Basgom
DO MLne S £ Assesament of Infonaton Extracuon Spatests i Sology
oI Wy o

Sooe_gramman

rradict
COMPOative_seotenies
comiamn
conil2000
ConftZiO
comt00?
ubade
Sepeadency. free ek

Depasdency #
Dedon 'Word
Sampie Ewo

Fartament Procesdngs Panlie’ Comu
Thumta P v Trana sk
[\.&'bu.{

ev:httpa://raw.githubuserpontaent,.com/nltk/nitk data/gn-pages/index.xnl

2.2: Tokenisation in NLTK
NLTK allows you to perform tokenisation using one command only
e First import the word_tokenize function using the command:

from nltk import word_tokenize

e The word_tokenize() function takes as an input a document (single string variable
not list) and returns a list of words contained in that document

from nltk import word_tokenize

document = 'Tokenisation is really easy in NLTK'
words = word_tokenize(document)

print(words)

['Tokenisation', 'is', 'really', 'easy’, 'in', 'NLTK']

4

2.3: Part-of-speech (POS) tagging in NLTK
Similar to tokenisation, POS tagging is performed with one command only
e First import the pos_tag function using the command: ‘from nltk import pos_tag’

from nltk import word_tokenize
from nltk import pos_tag

e The pos_tag() function takes as an input a list of words, previously extracted
using the word_tokenise() function and it returns a list of tuples, where the first
item of the tuple is the word and the second item the POS tag

from nltk import word_tokenize

from nltk import pos_tag

document = 'Tokenisation is really easy in NLTK'

words = word_tokenize(document)

words_with_pos_tags = pos_tag(words)

for word, pos_tag in words_with_pos_tags:
print(word, pos_tag)

Tokenisation NN
is VBZ

really RB

easy 1]

in IN

NLTK NNP

Activity 3 - Extracting Bigrams in NLTK
3.1 Using only one NLTK command you can extract bigrams
e Firstimport the pos_tag function using the command: ‘from nltk import pos_tag

7

from nltk import bigrams

e The bigrams() function takes as an input a list of tuples, previously extracted
using the pos_tag() function, and returns a Python iterable object which can be
easily converted into a list of pairs/tuples using the list() function.

e Each pairin the list consist of two items:

o thefirst item is a <word, pos tag> tuple which corresponds to the first word of
the bigram

o the second item is another <word, pos tag> tuple which corresponds to the
second word of the bigram

Printing bigram elements

from nltk import word_tokenize

from nltk import pos_tag

from nltk import bigrams

document = 'Tokenisation is really easy in NLTK'

words = word_tokenize(document)

words_with_pos_tags = pos_tag(words)

bigrams_with_pos_tags = list(bigrams(words_with_pos_tags))

for first_element, second_element in bigrams_with_pos_tags:
print(first_element, second_element)

(‘Tokenisation', 'NN') ('is', 'VBZ')
('is', 'vBZ') ('really', 'RB")
('really', 'RB') ('easy', '33')
('easy', '23') ('in', 'IN')

('in', 'IN') ('NLTK', 'NNP')

Printing parts of bigram elements

from nltk import word_tokenize

from nltk import pos_tag

from nltk import bigrams

document = 'Tokenisation is really easy in NLTK'

words = word_tokenize(document)

words_with_pos_tags = pos_tag(words)

bigrams_with_pos_tags = list(bigrams(words_with_pos_tags))

for first_element, second_element in bigrams_with_pos_tags:
first_word_of_bigram, first_word_pos_tag = first_element[@], first_element[1]
second_word_of_bigram, second_word_pos_tag = second_element[0], second_element[1]
print first_word_of_bigram, first_word_pos_tag, second_word_of_bigram, second_word_pos_tag)

Tokenisation NN is VBZ
is VBZ really RB
really RB easy 12

easy JJ in IN

in IN NLTK MNP

3.2 Computing the Frequency of Bigrams
U To compute the frequency of bigrams we will need to write our own custom
function. Our function should take as an input a list of bigrams with POS tags,
previously extracted using the function list(bigrams()) and it should return a
dictionary with the following keys/values:
1. Key of dictionary: Tuple: <first word of bigram, second word of bigram>
2. Value of dictionary: Frequency of the bigram

def compute_frequency_of_bigrams(bigrams_with_pos_tags):
bigrams_with_frequencies = {}
for first_element, second_element in bigrams_with_pos_tags:
first_word_of_bigram, first_word_pos_tag = first_element[@], first_element[1]
second_word_of_bigram, second_word_pos_tag = second_element[@], second_element[1]
if (first_word_of_bigram, second_word_of_bigram) in bigrams_with_frequencies:
bigrams_with_frequencies[(first_word_of_bigram, second_word_of_bigram)] += 1
else:
bigrams_with_frequencies[(first_word_of_bigram, second_word_of_bigram)] = 1
return bigrams_with_frequencies

e Finally, we simply need to call the compute_frequency_of bigrams() function

document

= 'The City of New York is often called New York City or simply New York.'

words = word_ tokenize(document)

bigrams with pos tags = list(bigrams(words with pos tags))
bigrams with_ frequencies = compute_frequency_ of bigrams(bigrams with_pos_tags)
for bigram in bigrams with_frequencies:

print(bigram, bigrams with frequencies[bigram]

rdal

Loading Amazon reviews

(‘The’,
('City’,

City') 1
'of') 1

(‘of', 'New') 1

('New', '
('York',

York') 3
‘ig') 1

('is', 'often') 1

('often’,
(‘called’
('York',
('City’,

‘called') 1
, 'New') 1
‘city') 1
‘or'y) 1

(‘or', 'simply') 1

('simply’
('York',

, 'New') 1
'2') 1

3.3 Sorting bigrams by frequency

The sorted() function of the Python’s operator library can be used to sort a
dictionary by values.

import operator

document = ‘The City of New York is often called New York City or simply New York.'
words = word_ tokenize(document)

words with pos tags = pos_tag(words)

bigrams_with pos tags = list(bigrams(words with pos tags))

bigrams with fregquencies = compute frequency of bigrams(bigrams with pos tags
bigrams with_ frequencies sorted = dict(sorted(bigrams with freguencies.items(),

key=operator.itemgetter(l), reverse=True))

Or bigram in bigrams_with_Ifregquencies_sor 3
print(bigram, bigrams with_frequencies sorted bigram)

Loading Amazon reviews

('New',
('The',
('City’,

'York') 3
‘City') 1
'of') 1

('of", 'New') 1

('York',

'is') 1

('is', 'often') 1
('often', 'called') 1

('called
('York',
('City’',

', ‘New') 1
‘City') 1
‘or') 1

('or', 'simply') 1

('simply
('York',

'y 'New') 1
LT W §

Activity 4: Advanced (not compulsory)

Exercise:

Given the sentence:
“The City of New York is often called New York City or simply New York.”

filter the bigram list by keeping only those bigrams whose POS tag matches one
of the following:

o “JJNN”

o “NNNN”

o “NNP NNP”

o “NNP NN”
Hint: In the compute_frequency_of bigrams() function add an if statement to filter bigrams

4.1 Computing Mutual information
e To compute the mutual information, you first need to import Python’s math
library

import math

P(x,y)
14€9146%

e Then you need to compute the following:
1. N=number of unique words
2. Probability of first word = frequency of first word/N
3. Probability of second word = frequency of second word/N
4. Probability of bigram = frequency of bigram/N

pmi(x;y) = log,

import math

N=14307668

frequency of bigram = 20
frequency of first word = 42
frequency of second word = 20

probability of first word = frequency_ of_ first word/N

probability of second word = frequency of second word/N

probability of bigram = frequency of bigram/N

mi = math.log(probability of bigram/(probability of first word*probability of second word), 2.0)
print(mi)

18.37796778847999

