
1

IOC Topic 7A.2 Part 4 – Advanced Python

Transcript & Notes

Author: Dr. Robert Lyon

Contact: robert.lyon@edgehill.ac.uk (www.scienceguyrob.com)

Institution: Edge Hill University

Version: 1.0

Introduction Slide

Hello and welcome to Part 4 of Topic 7A, Module 2, Advanced Python. In this module we aim

to provide some background that will help you understand the programming you’ve already

done. We eventually build upon this background and introduce some of the “advanced”

features of Python. We’ll also explore the Object-Orientated approach to software design. My

name is Dr. Robert Lyon, and I’ll be taking you through this module.

Slide 1

In Part 4 we will move onto some advanced topics,

• Object-orientated Programming.

• Classes in Python.

• Instance variables & functions.

• Objects and their relationship to classes.

• Inheritance in Python.

• UML Diagrams.

• Design Patterns.

• Testing our code.

The aim: to get you writing sophisticated programs by yourselves, using modern programming

methods.

Slide 2

• You now have an idea of what the Google Colab environment is all about, given your

experiences during part 3 of the module. I’ve created another Colab notebook to help you

through part 4.

• The notebook includes instructions on how to use it, so please read through those carefully.

The main thing to remember is that you need to create your own version of this notebook to

be able to run and edit it. This too is explained in the notebook.

• Remember you need to use Google Chrome to access the Colab environment.

http://www.scienceguyrob.com/

2

• The link to the resource is shown on the slide:

https://colab.research.google.com/drive/1aQVFHdSsKFuWCROmvYVr-kTSkZ_5q3sw .

• Head over to the notebook when directed to in the slides.

Slide 3

• There are many possible approaches you can take to modern software development.

• The best approach to take will vary according to the problem your trying to solve, the skill of

the workforce, business needs (e.g. is a quick turnaround needed?), and the tools being used.

• We don’t have the time to cover all the issues, but we can introduce you to one of the most

prevalent approaches to software design applied today.

• This is called: Object Orientated Design.

Slide 4

• Object orientated design focuses on breaking down complex problems, describing them in

terms of objects and their interaction.

• For instance, if building a car, object-orientated design focuses on describing each part as a

self-contained, self-describable object.

• These objects are then combined to build the whole, using what we call “interfaces” to define

how objects interact with one another.

• As the interfaces are strongly defined, it reduces to scope for error or unexpected behaviour.

• How to relate these ideas to the real-world:

o Suppose you're design a suspension system. If you design it for one specific car, it is difficult

to apply the hard work elsewhere. If you modularize the suspension system, you can use it in

other cars with little to no extra effort.

Slide 5

• Robustness – this involves building code robust to error. We can do this by writing code that

prevents errors occurring from the ground up.

• Adaptability - building code that can adapt to new scenarios.

• Reusability - producing units of code that can be reused with zero additional effort.

• Modularity – divide our code into self-contained functional units. These units can then be

applied elsewhere. Also helps prevent errors, as we can pinpoint which module was the cause

of an error without checking al our code.

• Abstraction - To distil a complicated system down to its most fundamental parts. These can

then be tackled in turn and split across teams working in different areas.

• Encapsulation - binds data and methods together so they cannot be altered by other

programs inadvertently, providing robustness and adaptability. In other words, objects

maintain control over their function and state, preventing them from being easily misused.

https://colab.research.google.com/drive/1aQVFHdSsKFuWCROmvYVr-kTSkZ_5q3sw

3

Slide 6

Let's learn by doing – it will make things clearer. Suppose we want to build a credit card

transaction system. What objects could make up this system? We might have,

• A customer.

• A bank.

• A credit card account.

Each of these objects has some characteristics and a set of actions that it can take directly or

undertake when instructed.

We can describe this using some simple graphical notation. For example, here we can see a

customer object. It consists of a collection of attributes that describe its characteristics, and

a collection of actions it can execute. Take a moment to look over this diagram. Be sure you

understand it before moving on.

Slide 7

• A class serves as the primary means for describing objects in object-orientated programming

– including in Python.

• A class consists of the following two components:

o Attributes, also known as fields or instance variables.

o Methods also known as member functions, or just functions.

• We can see some new notation in our diagram.

o We can see that variable types are now defined after the colon symbol.

o Function return types are also defined similarly.

o Variables and methods are proceeded by either plus or minus characters. This describes

their visibility to other classes.

Slide 8

• In this example, we can see there are two class variables.

• A class can have as many variables as required to complete a task.

• A class can also have a variable which is another object class. We can see this here, in this

updated class definition of Customer. This class now has an instance variable which is of the

type Credit Card.

• Class variables can be accessed by any of the functions within the class definition.

• Class variables can only be accessed outside of the class if they are public (+).

Slide 9

• Class methods are responsible for carrying out actions for the class.

• Class methods can be public or private. For example:

4

• As a human I have a class method called sleep(). It is a private method, which only I can invoke

on myself – I wouldn't want others putting me to sleep!

• I have public methods such as talk() that others can invoke.

• Class methods can only be accessed outside of the class, if they are public (+).

• These public methods define the interface for the class – that is, how other objects can

interact with it.

Slide 10

• When faced with a problem, it can often be helpful to take a step back, and think about the

best way of solving it before diving right in.

• Designing classes is one way of doing this, helping you to develop the structure of the code

you need to write.

• You've actually just learned one tool for developing designs – Unified Modelling Language

(UML) diagrams.

• UML diagrams are used in industry:

• You can read these diagrams and understand their meaning.

• You can create these designs for yourself.

Slide 11

• Object orientated approaches to design, provide you with a toolkit useful for building

software (and other systems), independently of any coding tools.

• This means you can decouple the design process from the act of writing code.

• This means you can create class diagrams, give them to a software engineer, and have them

create the code required to solve a problem.

• We can apply object-orientated thinking to other problems.

• When we try to apply object orientated methods to a specific language, we a creating a

language specific implementation.

• What does this implementation look like in Python?

Slide 12

• We are given the UML class description to the right. We need to turn this into a class. There

are two instance variables, and a single instance method in the diagram.

• In Python, we can define a class using the class keyword. We do this as follows:

class Person:

Slide 13

• We then define a class constructor. This initializes the class, ensuring any instance variables

are assigned the values they require. A constructor is always called when creating a class. That

is, the constructor is called by the Python interpreter when we try to create a class.

5

• Values can be passed to the constructor as parameters.

• A constructor is defined in Python by creating a function called __init__() with a signature as

follows.

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

• This assigns the name and age variables, the values of the parameters passed into the

constructor during object creation.

Slide 14

• We can define instance methods by creating functions that sit within the class (indented so

they are consider inside the class by Python).

• Here we have a simple function that prints "hello" when invoked.

Slide 15

• A UML diagram defines an object class. A Python class implements that object. To create the

object so it can be used in code, we must instantiate it.

• This can be done in Python very easily. All we need to do is create the object. This statement:

person_1 = Person("Rebecca", 30), tells the Python interpreter to create an Object of type

Person in memory, making space for the two instance variables name and age in the process.

These variables will be initialized with the values “Rebecca” and 30 via the constructor.

• We can then access the instance variables of the created object. Here we simply print out the

value of the name variable, to confirm the value we passed in to the constructor has been

stored.

• Finally, we can call an instance method as shown here.

Slide 16

Clearly this is a trivial example. Can you create something a little more complex? Head over

to the Colab notebook and try and create a Credit Card class. I'll try and use this to make some

purchases and figure out my likely interest liability!

Slide 17

• In object-orientated design, a class should contain all the data and methods required for it to

complete any and all tasks required.

• We simply call this encapsulation.

• The idea behind encapsulation, is that by designing classes in this way, they become modular,

and can be plugged in elsewhere without us needing to re-write code.

6

• We can use encapsulation to share or hide information as required.

• For example, if we have a Customer class, there may be a class variable such as account

number. This may need to be hidden from other classes – but can be exposed via a function

if necessary, for example:

 get_account_number(passcode): int

• This would only return the account number, if the passcode is correct. Can you modify your

Credit Card Class, so that it only permits payments if a passcode is provided? Try this in the

Colab now.

Slide 18

• Objects and classes can often be ordered hierarchically.

• We can see here, that there is a clear relationship between the Animal Class, and the

Vertebrate and Invertebrate classes.

• There is more to this simple structure than meets the eye. In object-orientated design, objects

at the top of the hierarchy can “share” their instance variables and functions, with the classes

below them.

• These are inherited, much like we inherit traits from our parents.

• In other words, a class can inherit from it’s direct parent class.

• Thus here, the Vertebrate and Invertebrate classes can inherit directly from the Animal class.

Slide 19

• Suppose we have the animal class defined in the UML diagram to the right. We can see there

are some instance variables and functions.

• The Vertebrate and Invertebrate classes inherit these.

• Thus, when we create a new Vertebrate using the following code:

Create the object.

v_1 = Vertebrate("Pikaia", 0.01)

• We can do the following to access instance methods or functions:

Print instance variable.

print(“Vertebrate name:", v_1.name)

Call instance method.

v_1.respirate()

Slide 20

• To make this happen, when we create the Vertebrate class we must do two things:

• Explicitly state that it inherent from Animal, using this syntax:

• Execute the parent class super()method, which causes it to be initialized.

7

class Vertebrate(Animal):

 def __init__(self, name, age):

 super.__init__(name, age)

• By running the super()method, we gain access to the parent class variables. Note that the

super function allows you access to the parent class.

Slide 21

• What’s really happening with the super() function?

• When we run the code below for the Vertebrate class:

class Vertebrate(Animal):

 def __init__(self, name, age):

 super.__init__(name, age)

• The code super.__init__(name, age) just executes the __init__() function inside the animal

class .

• But it passes in the name and age values as parameters:

class Animal:

 def __init__(self, name, age):

 super.__init__(name, age)

• This ensures the class variables are correctly initialized.

Slide 22

• Inheritance becomes very powerful once you learn to utilize it.

• If you design your code well, you can use inheritance to maximize code reuse, which saves a

great deal of time.

• Inheritance can get out of hand if the hierarchy gets too deep, so try to restrict to a number

of layers that you feel are manageable.

• There are more examples in the Colab notebook that will help you improve and apply your

understanding of inheritance.

• We can represent inheritance in UML as shown in the diagram to the right.

Slide 23

• There is a lot more to object-orientated design, and Python – we simply haven’t had the time

to cover it all.

8

• I would have enjoyed explaining things in detail for you, but given our constraints, my aim

was to equip you the tools you need to increase your knowledge independently moving

forward.

• If you’re interested in continuing with programming Python, I recommend checking out the

resources I provide in the Colab Notebook. I also provide links in the notebook to resources

that will help you learn more.

• Remember, you are free to modify the notebooks as you please – I don’t mind you copying

my code!

Slide 24

In this final part of the module we’ve covered,

• Object-orientated Programming.

• Classes in Python.

• Instance variables & functions.

• Objects and their relationship to classes.

• Inheritance in Python.

• UML Diagrams.

• Testing our code.

We’ve covered much of the base material you need to understand to move on from here.

Head over to the Colab to continue honing your skills. One more thing – we also have some

industry inspired activities for you to try. You can get them in a separate Colab workbook:

https://colab.research.google.com/drive/1THKZ2aNSWKuZ0i1_tKZew3-S8SRK63-j

Thanks for listening.

https://colab.research.google.com/drive/1THKZ2aNSWKuZ0i1_tKZew3-S8SRK63-j

